skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Jingang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Atomically thin two-dimensional (2D) materials exhibit extraordinary optical, electrical, and mechanical properties. Many functional nanostructures and devices of exceptional performance based on 2D materials have been demonstrated. However, the processing of 2D materials remains challenging due to inadequacies that are mainly driven by high fabrication cost, complex steps, and inefficient impurity control. On the other hand, laser-aided processing techniques offer versatility, nanoscale precision, and high throughput. Numerous efforts have showcased the implementation of laser processing and functionalization of 2D materials to control their physical properties and optimize device functionality. In this Perspective, we summarize research progress on laser-enabled thinning, patterning, doping, and functionalization of 2D materials. Continuing advances in optical processing techniques are anticipated to further accelerate the deployment of 2D materials and devices in many fields, including photonics, optoelectronics, and sensor applications. 
    more » « less
  2. Abstract 2D transition metal dichalcogenides (TMDCs) have emerged as a promising class of materials for broad applications. The physical properties of TMDCs are dominated by strong excitonic effects, which critically determine the performance of photonic and optoelectronic devices. In this Review, the current state of research on exciton dynamics in TMDCs is summarized, discussed common optical characterization techniques, and analyzed factors that influence exciton behaviors, such as thickness, dielectric environment, strain, and heterostructure configuration. Throughout this work, the challenges and opportunities for future research in this rapidly evolving field are also highlighted. 
    more » « less
  3. Rational manipulation and assembly of discrete colloidal particles into architected superstructures have enabled several applications in materials science and nanotechnology. Optical manipulation techniques, typically operated in fluid media, facilitate the precise arrangement of colloidal particles into superstructures by using focused laser beams. However, as the optical energy is turned off, the inherent Brownian motion of the particles in fluid media impedes the retention and reconfiguration of such superstructures. Overcoming this fundamental limitation, we present on-demand, three-dimensional (3D) optical manipulation of colloidal particles in a phase-change solid medium made of surfactant bilayers. Unlike liquid crystal media, the lack of fluid flow within the bilayer media enables the assembly and retention of colloids for diverse spatial configurations. By utilizing the optically controlled temperature-dependent interactions between the particles and their surrounding media, we experimentally exhibit the holonomic microscale control of diverse particles for repeatable, reconfigurable, and controlled colloidal arrangements in 3D. Finally, we demonstrate tunable light–matter interactions between the particles and 2D materials by successfully manipulating and retaining these particles at fixed distances from the 2D material layers. Our experimental results demonstrate that the particles can be retained for over 120 days without any change in their relative positions or degradation in the bilayers. With the capability of arranging particles in 3D configurations with long-term stability, our platform pushes the frontiers of optical manipulation for distinct applications such as metamaterial fabrication, information storage, and security. 
    more » « less
  4. C–H bond activation enables the facile synthesis of new chemicals. While C–H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C–H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots in a spatially-resolved fashion. We unravel the efficient H adsorption and a lowered energy barrier of C–C coupling mediated by 2D TMDCs to promote C–H activation and carbon dots synthesis. Our results shed light on 2D materials for C–H activation in organic compounds for applications in organic chemistry, environmental remediation, and photonic materials. 
    more » « less
  5. C–H bond activation enables the facile synthesis of new chemicals. While C–H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C–H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots in a spatially-resolved fashion. We unravel the efficient H adsorption and a lowered energy barrier of C–C coupling mediated by 2D TMDCs to promote C–H activation and carbon dots synthesis. Our results shed light on 2D materials for C–H activation in organic compounds for applications in organic chemistry, environmental remediation, and photonic materials. 
    more » « less
  6. Abstract C–H bond activation enables the facile synthesis of new chemicals. While C–H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C–H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots in a spatially-resolved fashion. We unravel the efficient H adsorption and a lowered energy barrier of C–C coupling mediated by 2D TMDCs to promote C–H activation and carbon dots synthesis. Our results shed light on 2D materials for C–H activation in organic compounds for applications in organic chemistry, environmental remediation, and photonic materials. 
    more » « less
  7. Abstract Optical tweezers have profound importance across fields ranging from manufacturing to biotechnology. However, the requirement of refractive index contrast and high laser power results in potential photon and thermal damage to the trapped objects, such as nanoparticles and biological cells. Optothermal tweezers have been developed to trap particles and biological cells via opto-thermophoresis with much lower laser powers. However, the intense laser heating and stringent requirement of the solution environment prevent their use for general biological applications. Here, we propose hypothermal opto-thermophoretic tweezers (HOTTs) to achieve low-power trapping of diverse colloids and biological cells in their native fluids. HOTTs exploit an environmental cooling strategy to simultaneously enhance the thermophoretic trapping force at sub-ambient temperatures and suppress the thermal damage to target objects. We further apply HOTTs to demonstrate the three-dimensional manipulation of functional plasmonic vesicles for controlled cargo delivery. With their noninvasiveness and versatile capabilities, HOTTs present a promising tool for fundamental studies and practical applications in materials science and biotechnology. 
    more » « less
  8. Abstract The interaction between cell surface receptors and extracellular ligands is highly related to many physiological processes in living systems. Many techniques have been developed to measure the ligand-receptor binding kinetics at the single-cell level. However, few techniques can measure the physiologically relevant shear binding affinity over a single cell in the clinical environment. Here, we develop a new optical technique, termed single-cell rotational adhesion frequency assay (scRAFA), that mimics in vivo cell adhesion to achieve label-free determination of both homogeneous and heterogeneous binding kinetics of targeted cells at the subcellular level. Moreover, the scRAFA is also applicable to analyze the binding affinities on a single cell in native human biofluids. With its superior performance and general applicability, scRAFA is expected to find applications in study of the spatial organization of cell surface receptors and diagnosis of infectious diseases. 
    more » « less